Maths in Economics
Informacje ogólne
Kod przedmiotu: | 4.17.E.461 |
Kod Erasmus / ISCED: | (brak danych) / (brak danych) |
Nazwa przedmiotu: | Maths in Economics |
Jednostka: | Instytut Ekonomii i Finansów |
Grupy: |
Harmonogram I rok Ekonomii IB- studia stacjonarne I'- sem. zimowy Harmonogram I roku Ekonomii IB- studia stacjonarne I' semestr zimowy Katalog przedmiotów dla studiów krótkoterminowych (Erasmus+ lub inne umowy o współpracy) |
Punkty ECTS i inne: |
6.00
|
Język prowadzenia: | angielski |
Rodzaj przedmiotu: | obowiązkowe |
Kierunek studiów: | ECONOMICS International Business |
Semestr, w którym realizowany jest przedmiot: | 1 |
Rodzaj przedmiotu: | obowiązkowe |
Wymagania: | 1. knowledge: student knows basic principles of algebra 2. intellectual skills : student performs the elementary algebraic operations, student solves simple equations and inequalities 3. social skills: student is aware of the need for further education |
Literatura uzupełniająca: | Mathematics. Michna, Zbigniew. 2012 | Wrocław : Publishing House of Wrocław University of Economics Mathematics in economics / edit. Emil Panek. 2009. Wydawnictwo Uniwersytetu Ekonomicznego (Poznań) Mathematics in economics and management : examples and exercises / Marcin Anholcer. Wydawnictwo Uniwersytetu Ekonomicznego (Poznań) 2015 Selected topics in mathematics : a primer for economists / Marta Kornafel. Wydawnictwo Uniwersytetu Ekonomicznego (Kraków) Wydawca 2019. |
Nakład pracy studenta: | Individual solving of the lists of exercises (based on the solved exercises during the classes). |
Skrócony opis: |
After the course the student will be able to: - understand and use the basic concepts and tools of higher mathematics which are necessary in modern management, - notice applications of higher mathematics to everyday economical and management problems, - apply analytical reasoning and propose quantitative models of o real-world problems, - use mathematical ideas to solve real-world problems. |
Pełny opis: |
Concept of a function, basic types of functions (examples of application: cost function, total revenue (income) function, profit function, demand and supply functions). Derivative of functions of one variable (examples of application: marginal cost, marginal revenue, marginal profit). Maxima and minima of functions of one variable, monotonicity intervals, concavity, convexity, points of inflection (examples of application: cost minimization, profit maximization). Derivative of functions of two variable, maxima and minima of functions of two variables (examples of application: marginal analysis, optimization). Indefinite integral and definite integral (example of application: marginal analysis). Matrices, elementary operations performed on matrices, determinant of a matrix, matrix inversion (example of application: range of values of resources for which production is non-negative). Systems of linear equations (examples of application: breakeven analysis, market equilibrium). Systems of linear inequalities (example of application: optimization in the solution set of a system of linear inequalities). |
Literatura: |
Mathematics. Michna, Zbigniew. 2012 | Wrocław : Publishing House of Wrocław University of Economics Mathematics in economics / edit. Emil Panek. 2009. Wydawnictwo Uniwersytetu Ekonomicznego (Poznań) Mathematics in economics and management : examples and exercises / Marcin Anholcer. Wydawnictwo Uniwersytetu Ekonomicznego (Poznań) 2015 Selected topics in mathematics : a primer for economists / Marta Kornafel. Wydawnictwo Uniwersytetu Ekonomicznego (Kraków) Wydawca 2019. |
Efekty uczenia się: |
KNOWLEDGE Name properties of elementary functions. Identify when there is need to find extreme points of a function. Define an integral. Explain basic operations on matrices. SKILLS Notice and apply elementary functions in complex formulas. Use the rules of differentiation, i.e., calculate the derivative of a given function. Find the maximum and minimum value of a given function. Use the techniques of integration. Perform the elementary operations on matrices. Use the matrix algebra to solve a given system of linear equations. Use the matrix algebra to solve a system of linear inequalities. Use derivatives to analyze functions. Identify when to use matrices or vectors. Identify when to use systems of linear equations or inequalities. SOCIAL COMPETENCE Organize his work and deepen his knowledge |
Metody i kryteria oceniania: |
Methods: lecture, discussion, tasks solving Assessment criteria: obtaining at least 50% of points from written tests, activity and participation in exercises Grading system 0 - 49% fail (2) 50% - 59% satisfactory (3) 60% - 69% more than satisfactory (3+) 70% - 79% good (4) 80% - 89% very good (4+) 90% - 100% excellent (5) |
Praktyki zawodowe: |
not applicable |
Zajęcia w cyklu "Semestr zimowy 2023/2024" (zakończony)
Okres: | 2023-10-01 - 2024-02-29 |
Przejdź do planu
PN KON
KON
WYK
WYK
WT ŚR CZ PT |
Typ zajęć: |
Konwersatorium, 30 godzin
Wykład, 30 godzin
|
|
Koordynatorzy: | Agnieszka Tłuczak | |
Prowadzący grup: | Agnieszka Tłuczak | |
Lista studentów: | (nie masz dostępu) | |
Zaliczenie: |
Przedmiot -
Egzamin
Konwersatorium - Zaliczenie na ocenę Wykład - Egzamin |
|
Literatura uzupełniająca: | Simmons, George F. Di¤erential Equations. (2nd Ed) Dixit, Avinash. 1990. Optimization in Economic Theory (2nd Ed.). Chiang, Alpha C. 1999. Elements of Dynamic Optimization |
|
Skrócony opis: |
The aim of the course is to acquaint students with the basic mathematical concepts and basic mathematical methods applicable in economic sciences, and to improve the skills of abstract thinking and solving mathematical problems. |
|
Pełny opis: |
Linear Algebra - linear space, matrices and linear transformations, determinant, inverse matrix, rank of a matrix, systems of linear equations and inequalities. Numerical sequence, limit of a sequence, limit of a function. Function of one variable. Differential calculus - derivative functions, the rules for calculating the derivative, optimization, testing of a function. Integrals: Indefinite integral, definite integral, improper integral. Elements of mathematical analysis of functions of several variables - limit of a function of many variables, the derivative of a function of several variables, extreme of functions of several variables. |
|
Literatura: |
1. Treil, Sergei . 2010. Linear Algebra Done Wrong. (LADW) [ebook available at www.math.brown.edu/~treil/papers/LADW/LADW_intro.pdf] Strang, Gilbert. 2003. Linear Algebra And Its Application, (3rd Ed). Simmons, G. F.1963. Introduction to Topology & Modern Analysis. Simon and Blume. 1994. Mathematics for Economists. Norton & Co. |
Zajęcia w cyklu "Semestr zimowy 2024/2025" (w trakcie)
Okres: | 2024-10-01 - 2025-02-28 |
Przejdź do planu
PN WYK
WYK
WT KON
KON
ŚR CZ PT |
Typ zajęć: |
Konwersatorium, 30 godzin
Wykład, 30 godzin
|
|
Koordynatorzy: | Agnieszka Tłuczak | |
Prowadzący grup: | Agnieszka Tłuczak | |
Lista studentów: | (nie masz dostępu) | |
Zaliczenie: |
Przedmiot -
Egzamin
Konwersatorium - Zaliczenie na ocenę Wykład - Egzamin |
|
Literatura uzupełniająca: | Mathematics. Michna, Zbigniew. 2012 | Wrocław : Publishing House of Wrocław University of Economics Mathematics in economics / edit. Emil Panek. 2009. Wydawnictwo Uniwersytetu Ekonomicznego (Poznań) Mathematics in economics and management : examples and exercises / Marcin Anholcer. Wydawnictwo Uniwersytetu Ekonomicznego (Poznań) 2015 Selected topics in mathematics : a primer for economists / Marta Kornafel. Wydawnictwo Uniwersytetu Ekonomicznego (Kraków) Wydawca 2019. |
|
Rodzaj przedmiotu: | obowiązkowe |
|
Tryb prowadzenia: | Realizowany w sali |
|
Skrócony opis: |
After the course the student will be able to: - understand and use the basic concepts and tools of higher mathematics which are necessary in modern management, - notice applications of higher mathematics to everyday economical and management problems, - apply analytical reasoning and propose quantitative models of o real-world problems, - use mathematical ideas to solve real-world problems. |
|
Pełny opis: |
Concept of a function, basic types of functions (examples of application: cost function, total revenue (income) function, profit function, demand and supply functions). Derivative of functions of one variable (examples of application: marginal cost, marginal revenue, marginal profit). Maxima and minima of functions of one variable, monotonicity intervals, concavity, convexity, points of inflection (examples of application: cost minimization, profit maximization). Derivative of functions of two variable, maxima and minima of functions of two variables (examples of application: marginal analysis, optimization). Indefinite integral and definite integral (example of application: marginal analysis). Matrices, elementary operations performed on matrices, determinant of a matrix, matrix inversion (example of application: range of values of resources for which production is non-negative). Systems of linear equations (examples of application: breakeven analysis, market equilibrium). Systems of linear inequalities (example of application: optimization in the solution set of a system of linear inequalities). |
|
Literatura: |
Mathematics. Michna, Zbigniew. 2012 | Wrocław : Publishing House of Wrocław University of Economics Mathematics in economics / edit. Emil Panek. 2009. Wydawnictwo Uniwersytetu Ekonomicznego (Poznań) Mathematics in economics and management : examples and exercises / Marcin Anholcer. Wydawnictwo Uniwersytetu Ekonomicznego (Poznań) 2015 Selected topics in mathematics : a primer for economists / Marta Kornafel. Wydawnictwo Uniwersytetu Ekonomicznego (Kraków) Wydawca 2019. |
Właścicielem praw autorskich jest Uniwersytet Opolski.